(AP®) Computer Science Principles Kentucky Academic Standards (KAS) for Computer Science This document aligns the Code.org (AP®) Computer Science Principles (CSP) course with the KAS for Computer Science. At least one KAS for Computer Science standard is aligned with each CSP lesson. The structure is as follows: • **Standard Identifier** (Identifier1, Identifier2) reflects consistent coding for the identification of a standard representing the grade (or grade band), the concept area and the numerated standard number per concept. Standard Example | Grade Ban | d Concept | (number) | |--|------------|--------------------------------| | Н | - - | 03 | | E = Grades K-5 ES
M = Grades 6-8 MS
H = Grades 9-12 HS | = 3.53 5.1 | Standard Number
per Concept | Standard (Standard1, Standard2) outlines what students are expected to know and be able to do. For more information about Kentucky Academic Standards, visit https://kystandards.org/. AP® is a trademark registered by the College Board, which is not affiliated with, and does not endorse this document. For teachers who choose to teach Computer Science Principles as an AP® course, this document includes Enduring Understandings from the AP® Computer Science Principles Course and Exam Description. For more information, visit https://apcentral.collegeboard.org/courses/ap-computer-science-principles. #### Standards Alignment #### Unit 1: The Internet | Lesson | Identifier1 | Standard1 | Identifier2 | Standard2 | CSP Enduring
Understandings | |---|--------------|---|-------------|---|---------------------------------| | Chapter 1: Rep | presenting a | and Transmitting Information | | | | | 1: Personal Innovations | H-IC-03 | Research how computational innovations that have revolutionized aspects of our culture might have evolved from a need to solve a problem. | | | 7.1, 7.2, 7.3, 7.4 | | 2: Sending Binary
Messages | H-AP-09 | Evaluate and refine computational artifacts to make them more usable and accessible using systematic testing and debugging. | H-AP-07 | Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests. | 2.1, 3.3 | | 3: Sending Binary
Messages with
the Internet
Simulator | H-NI-04 | Describe the issues that impact network functionality (e.g., bandwidth, load, delay, topology). | | | 2.1, 2.3, 3.1, 3.3,
6.1, 6.2 | | 4: Number
Systems | H-DA-09 | Evaluate the ability of models and simulations to test and support the refinement of hypotheses. * | H-CS-02 | Compare levels of abstraction and interactions between application software, system software and hardware layers. | 2.1, 2.3 | | 5: Binary
Numbers | H-CS-02 | Compare levels of abstraction and interactions between application software, system software and hardware layers. | | | 2.1, 2.3, 3.1 | | 6: Sending
Numbers | H-DA-09 | Evaluate the ability of models and simulations to test and support the refinement of hypotheses. * | | | 2.1, 2.3, 3.1, 6.2 | | 7: Sending Text | H-CS-02 | Compare levels of abstraction and interactions between application software, system software and hardware layers. | | | 2.1, 2.2 | |--|---------------|--|---------|--|--------------------| | Chapter 2: Inve | enting the In | ternet | | | | | 8: The Internet Is
for Everyone | H-IC-02 | Evaluate and assess how computing impacts personal, ethical, social, economic, and cultural practices. | | | 6.1, 6.2, 7.3, 7.4 | | 9: The Need for Addressing | H-NI-04 | Describe the issues that impact network functionality (e.g., bandwidth, load, delay, topology). | H-NI-01 | Evaluate the scalability and reliability of networks, by describing the relationship between routers, switches, end devices, topology, and addressing. | 6.1, 6.2, 6.3 | | 10: Routers and Redundancy | H-NI-04 | Describe the issues that impact network functionality (e.g., bandwidth, load, delay, topology). * | H-NI-01 | Evaluate the scalability and reliability of networks, by describing the relationship between routers, switches, end devices, topology, and addressing. | 3.3, 6.1, 6.2 | | 11: Pockets and
Making a Reliable
Internet | H-NI-04 | Describe the issues that impact network functionality (e.g., bandwidth, load, delay, topology). | H-NI-01 | Evaluate the scalability and reliability of networks, by describing the relationship between routers, switches, end devices, topology, and addressing. | 6.2 | | 12: The Need for DNS | H-NI-01 | Evaluate the scalability and reliability of networks, by describing the relationship between routers, switches, end devices, topology, and addressing. | H-NI-02 | Give examples to illustrate how sensitive data can be affected by viruses, malware and other attacks. | 6.1, 6.2 | | 13: HTTP and
Abstraction on
the Internet | H-CS-02 | Compare levels of abstraction and interactions between application software, system software and hardware layers. | H-NI-01 | Evaluate the scalability and reliability of networks, by describing the relationship between routers, switches, end devices, topology, and addressing. | 6.1, 6.2 | | 14: Practice PT – | H-IC-02 | Evaluate and assess how | H-IC-08 | Debate laws and regulations that | 6.3, 7.1, 7.4 | |-------------------|---------|--------------------------------|---------|-----------------------------------|---------------| | The Internet and | | computing impacts personal, | | impact the development and use | | | Society | | ethical, social, economic, and | | of software and the protection of | | | | | cultural practices. | | privacy. | | ## Unit 2: Digital Information | Lesson | Identifier1 | Standard1 | Identifier2 | Standard2 | CSP Enduring
Understandings | |---|--------------|---|-------------|---|--| | Chapter 1: Dig | ital Informa | tion | | | | | 1: Bytes and File
Sizes | H-DA-01 | Evaluate the tradeoffs in how data elements are organized and where data is stored. * | | | 2.1, 3.3 | | 2: Text
Compression | H-DA-01 | Evaluate the tradeoffs in how data elements are organized and where data is stored. * | | | 2.1, 2.2, 3.1, 3.3,
4.2 | | 3: Encoding B&W
Images | H-DA-01 | Evaluate the tradeoffs in how data elements are organized and where data is stored. * | H-CS-02 | Compare levels of abstraction and interactions between application software, system software and hardware layers. | 1.1, 1.2, 1.3, 2.1,
2.3, 3.1, 3.2, 3.3 | | 4: Encoding Color
Images | H-DA-01 | Evaluate the tradeoffs in how data elements are organized and where data is stored. * | H-CS-02 | Compare levels of abstraction and interactions between application software, system software and hardware layers. | 1.1, 1.2, 1.3, 2.1,
2.2, 2.3, 3.1, 3.2, 3.3 | | 5: Lossy vs.
Lossless
Compression | H-DA-01 | Evaluate the tradeoffs in how data elements are organized and where data is stored. * | H-AP-01 | Evaluate licenses that limit or restrict use of computational artifacts when using resources such as libraries. | 3.3, 7.3, 7.5 | | Lesson | Identifier1 | Standard1 | Identifier2 | Standard2 | CSP Enduring
Understandings | |-------------------------------------|-------------|---|-------------|---|---| | 6: Rapid Research - Format Showdown | H-DA-01 | Evaluate the tradeoffs in how data elements are organized and where data is stored. * | H-IC-03 | Research how computational innovations that have revolutionized aspects of our culture might have evolved from a need to solve a problem. | 1.1, 1.2, 2.1, 2.2,
3.2, 3.3, 7.3, 7.5 | ## Unit 3: Intro to Programming | Lesson | Identifier1 | Standard1 | Identifier2 | Standard2 | CSP Enduring
Understandings | |---|--------------|---|-------------|---|--------------------------------| | Chapter 1: Int | ro to Progra | mming | | | | | 1: The Need for
Programming
Languages | H-AP-07 | Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests. | | | 4.1, 5.2 | | 2: The Need for Algorithms | H-AP-07 | Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests. | | | 4.1, 4.2, 5.4 | | 3: Creativity in Algorithms | H-AP-07 | Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests. | H-AP-14 | Evaluate algorithms in terms of their efficiency, correctness, and clarity. * | 2.2, 4.1, 5.2 | | 4: Using Simple Commands | H-AP-07 | Create prototypes that use algorithms to solve computational problems by leveraging prior | H-AP-17 | Construct solutions to problems using student-created | 5.1, 5.2, 5.4 | | Lesson | Identifier1 | Standard1 | Identifier2 | Standard2 | CSP Enduring
Understandings | |--|-------------|--|-------------|---|--------------------------------| | | | student knowledge and personal interests. | | components, such as procedures, modules and/or objects. * | | | 5: Creating
Functions | H-AP-05 | Decompose problems into smaller components through systematic analysis, using constructs such as procedures, modules, and/or objects. | H-AP-08 | Create artifacts by using procedures within a program, combinations of data and procedures, or independent but interrelated programs. | 2.2, 5.3, 5.4 | | 6: Functions and
Top-Down
Design | H-AP-05 | Decompose problems into smaller components through systematic analysis, using constructs such as procedures, modules, and/or objects. | H-AP-08 | Create artifacts by using procedures within a program, combinations of data and procedures, or independent but interrelated programs. | 2.2, 5.1, 5.3 | | 7: APIs and Using Functions with Parameters | H-AP-05 | Decompose problems into smaller components through systematic analysis, using constructs such as procedures, modules, and/or objects. | H-AP-08 | Create artifacts by using procedures within a program, combinations of data and procedures, or independent but interrelated programs. | 2.2, 5.1, 5.3 | | 8: Creating
Functions with
Parameters | H-AP-05 | Decompose problems into smaller components through systematic analysis, using constructs such as procedures, modules, and/or objects. | | | 2.2, 5.3, 5.4 | | 9: Looping and
Random
Numbers | H-AP-06 | Justify the selection of specific control structures when tradeoffs involve implementation, readability, and program performance and explain the benefits and drawbacks of choices made. | H-AP-08 | Create artifacts by using procedures within a program, combinations of data and procedures, or independent but interrelated programs. | 4.1, 5.1, 5.3, 5.4 | | 10: Practice PT -
Design a Digital
Scene | H-AP-05 | Decompose problems into smaller components through systematic analysis, using constructs such as | H-AP-14 | Evaluate algorithms in terms of their efficiency, correctness, and clarity. * | 2.2, 4.1, 5.1, 5.3, 5.4 | | Lesson | ldentifier1 | Standard1 | Identifier2 | Standard2 | CSP Enduring
Understandings | |--------|-------------|--------------------------------------|-------------|-----------|--------------------------------| | | | procedures, modules, and/or objects. | | | | ## Unit 4: Big Data and Privacy | Lesson | Identifier1 | Standard1 | Identifier2 | Standard2 | CSP Enduring Understandings | | | | | |--|---------------------------------|---|-------------|---|-----------------------------|--|--|--|--| | Chapter 1: Big | Chapter 1: Big Data and Privacy | | | | | | | | | | 1: What is Big
Data? | H-DA-06 | Use data analysis tools and techniques to identify patterns and analyze data represented in complex systems. | H-IC-02 | Evaluate and assess how computing impacts personal, ethical, social, economic, and cultural practices. | 3.2, 7.2, 7.5 | | | | | | 2: Finding Trends with Visualizations | H-DA-01 | Evaluate the tradeoffs in how data elements are organized and where data is stored. * | H-DA-06 | Use data analysis tools and techniques to identify patterns and analyze data represented in complex systems. | 3.1, 3.2 | | | | | | 3: Check Your
Assumptions | H-DA-02 | Collect data using appropriate data collection tools and techniques to support a claim or to communicate information. | H-IC-02 | Evaluate and assess how computing impacts personal, ethical, social, economic, and cultural practices. | 3.1, 3.2, 7.4 | | | | | | 4: Rapid
Research - Data
Innovations | H-DA-06 | Use data analysis tools and techniques to identify patterns and analyze data represented in complex systems. | H-IC-02 | Evaluate and assess how computing impacts personal, ethical, social, economic, and cultural practices. | 1.2, 3.2, 7.1, 7.4, 7.5 | | | | | | 5: Identifying
People with
Data | H-IC-02 | Evaluate and assess how computing impacts personal, ethical, social, economic, and cultural practices. | H-IC-04 | Explain the beneficial and harmful effects that laws governing data (intellectual property, privacy etc.) can have on innovation. | 3.2, 3.3, 7.3 | | | | | | Lesson | Identifier1 | Standard1 | Identifier2 | Standard2 | CSP Enduring
Understandings | |---|-------------|--|-------------|---|--------------------------------| | 6: The Cost of
Free | H-IC-02 | Evaluate and assess how computing impacts personal, ethical, social, economic, and cultural practices. | H-IC-04 | Explain the beneficial and harmful effects that laws governing data (intellectual property, privacy etc.) can have on innovation. | 3.3, 7.3 | | 7: Simple
Encryption | H-NI-03 | Recommend security measures to address various scenarios based on factors such as usability, efficiency, feasibility, and ethical impacts. | H-NI-05 | Compare ways software developers protect devices and information from unauthorized access. * | 1.2, 3.3, 6.3, 7.3 | | 8: Encryption
with Keys and
Passwords | H-NI-03 | Recommend security measures to address various scenarios based on factors such as usability, efficiency, feasibility, and ethical impacts. | H-NI-05 | Compare ways software developers protect devices and information from unauthorized access. * | 2.3, 3.1, 4.2, 6.3 | | 9: Public Key
Cryptography | H-NI-03 | Recommend security measures to address various scenarios based on factors such as usability, efficiency, feasibility, and ethical impacts. | H-NI-05 | Compare ways software developers protect devices and information from unauthorized access. * | 4.2, 6.3 | | 10: Rapid
Research -
Cybercrime | H-NI-03 | Recommend security measures to address various scenarios based on factors such as usability, efficiency, feasibility, and ethical impacts. | H-NI-05 | Compare ways software developers protect devices and information from unauthorized access. * | 6.2, 6.3, 7.3 | ## Unit 5: Building Apps | Lesson | Identifier1 | Standard1 | Identifier2 | Standard2 | CSP Enduring
Understandings | | | | |---|-------------------------------------|--|-------------|-----------|--------------------------------|--|--|--| | Chapter 1: Ev | Chapter 1: Event-Driven Programming | | | | | | | | | 1: Introduction
to Event-Driven
Programming | H-AP-04 | Design and iteratively develop event-driven computational artifacts for practical intent, personal expression, or to address a societal issue. | | | 1.1, 1.2, 5.1, 5.4 | | | | | Lesson | Identifier1 | Standard1 | Identifier2 | Standard2 | CSP Enduring
Understandings | |--|-------------|--|-------------|-----------|---------------------------------| | 2: Multi-Screen
Apps | H-AP-04 | Design and iteratively develop event-driven computational artifacts for practical intent, personal expression, or to address a societal issue. | | | 1.1, 1.2, 5.1, 5.4 | | 3: Building an
App: Multi-
Screen App | H-AP-10 | Systematically design and develop programs for broad audiences by incorporating feedback from users. | | | 1.1, 1.2, 5.1, 5.4 | | 4: Controlling
Memory with
Variables | H-AP-03 | Use functions, data structures or objects to simplify solutions, generalizing computational problems instead of repeated use of simple variables. | | | 5.2, 5.4, 5.5 | | 5: Building an
App: Clicker
Game | H-AP-05 | Decompose problems into smaller components through systematic analysis, using constructs such as procedures, modules, and/or objects. | | | 1.1, 1.2, 5.1, 5.2,
5.4, 5.5 | | 6: User Input
and Strings | H-AP-17 | Construct solutions to problems using student-created components, such as procedures, modules and/or objects. * | | | 5.1, 5.3 | | 7: If-statements
Unplugged | H-AP-06 | Justify the selection of specific control structures when tradeoffs involve implementation, readability, and program performance and explain the benefits and drawbacks of choices made. | | | 4.1, 5.2 | | 8: Boolean
Expressions and
"if" Statements | H-AP-03 | Use functions, data structures or objects to simplify solutions, generalizing computational | | | 4.1, 5.3 | | Lesson | Identifier1 | Standard1 | Identifier2 | Standard2 | CSP Enduring
Understandings | |---|-------------|--|-------------|--|---| | | | problems instead of repeated use of simple variables. | | | | | 9: "if-else-if" and
Conditional
Logic | H-AP-03 | Use functions, data structures or objects to simplify solutions, generalizing computational problems instead of repeated use of simple variables. | | | 4.1, 5.1, 5.5 | | 10: Building an
App: Color
Sleuth | H-AP-08 | Create artifacts by using procedures within a program, combinations of data and procedures, or independent but interrelated programs. | | | 1.1, 1.2, 2.2, 4.1,
5.1, 5.2, 5.3, 5.4,
5.5 | | Chapter 2: Pro | ogramming v | vith Data Structures | | | | | 11: While Loops | H-AP-14 | Evaluate algorithms in terms of their efficiency, correctness, and clarity. * | | | 3.1, 4.1, 5.2, 5.4,
5.5 | | 12: Loops and Simulations | H-AP-14 | Evaluate algorithms in terms of their efficiency, correctness, and clarity. * | H-DA-09 | Evaluate the ability of models and simulations to test and support the refinement of hypotheses. * | 2.3, 4.1, 5.1 | | 13: Introduction to Arrays | H-AP-15 | Compare and contrast fundamental data structures and their uses. * | | | 1.1, 5.1, 5.3, 5.5 | | 14: Building an
App: Image
Scroller | H-AP-02 | Use a development process in creating a computational artifact that leads to a minimum viable product followed by reflection, analysis, and iteration. | | | 5.1, 5.2, 5.3, 5.4, 5.5 | | 15: Processing Arrays | H-AP-13 | Use and adapt classic algorithms to solve computational problems. * | | | 1.2, 4.1, 4.2, 5.1, 5.3,
5.5 | | Lesson | Identifier1 | Standard1 | Identifier2 | Standard2 | CSP Enduring
Understandings | |---|-------------|---|-------------|-----------|---| | 16: Functions
with Return
Values | H-AP-03 | Use functions, data structures or objects to simplify solutions, generalizing computational problems instead of repeated use of simple variables. | | | 1.1, 1.2, 2.2, 4.1, 5.2,
5.3, 5.5 | | 17: Building an
App: Canvas
Painter | H-AP-04 | Design and iteratively develop event-driven computational artifacts for practical intent, personal expression, or to address a societal issue. | | | 1.2, 1.3, 2.2, 4.1, 5.1,
5.3, 5.4, 5.5 | # Unit 6: AP Explore PT Prep | Lesson | Identifier1 | Standard1 | Identifier2 | Standard2 | CSP Enduring
Understandings | |---|-------------|---|-------------|---|--| | 1: Explore PT -
Review the Task | H-IC-02 | Evaluate and assess how computing impacts personal, ethical, social, economic, and cultural practices. | | | 1.1, 1.2, 7.5 | | 2: Explore PT -
Make a Plan | H-IC-03 | Research how computational innovations that have revolutionized aspects of our culture might have evolved from a need to solve a problem. | | | 1.1, 1.2, 7.5 | | 3: Explore PT -
Complete the
Plan (8 hours) | H-IC-04 | International differences in laws and ethics have implications for computing in a global society (i.e. privacy, data, property, information, and identity). Students should be aware of intellectual property laws and be able to explain how they are used | H-IC-05 | Within the context of computing, one must account for the factors of equity, security, ethics, access and privacy in the design of computational artifacts for diverse populations. Students should be able to identify potential bias in the work of others and make | 1.2, 3.1, 3.2, 3.3, 7.1,
7.2, 7.3, 7.4, 7.5 | | Lesson | Identifier1 | Standard1 | Identifier2 | Standard2 | CSP Enduring
Understandings | |--------|-------------|--|-------------|---|--------------------------------| | | | to protect the interests of innovators or abused for financial gain. | | suggestions in order to make them
more beneficial in a diverse
society as well as decrease
security deficits that could result | | | | | | | in harms to culture, society or the economy. | | #### Unit 7: AP Create PT Prep | Lesson | Identifier1 | Standard1 | Identifier2 | Standard2 | CSP Enduring
Understandings | |---|-------------|---|-------------|-----------|---| | 1: Create PT -
Review the Task | H-AP-14 | Evaluate algorithms in terms of their efficiency, correctness, and clarity. * | | | 1.1, 1.2, 5.1 | | 2: Create PT -
Make a Plan | H-IC-05 | Evaluate and design computational artifacts to maximize their benefit to society. * | | | 1.2, 7.5 | | 3: Create PT -
Complete the
Plan (12 hours) | H-AP-08 | Create artifacts by using procedures within a program, combinations of data and procedures, or independent but interrelated programs. | | | 1.2, 2.2, 4.1, 5.1, 5.2, 5.3, 5.4, 5.5, 7.5 | #### Unit 8: Post AP | Lesson | Identifier1 | Standard1 | Identifier2 | Standard2 | CSP Enduring
Understandings | | | |---|--|--|-------------|---|--------------------------------|--|--| | Chapter 1: Ma | Chapter 1: Manipulating and Visualizing Data | | | | | | | | 1: Introduction
to Data | H-DA-06 | Use data analysis tools and techniques to identify patterns and analyze data represented in complex systems. | H-DA-02 | Collect data using appropriate data collection tools and techniques to support a claim or to communicate information. | 3.1, 3.2, 7.3 | | | | 2: Good and Bad
Data
Visualizations | H-DA-02 | Collect data using appropriate data collection tools and techniques to support a claim or to communicate information. | H-DA-09 | Evaluate the ability of models and simulations to test and support the refinement of hypotheses. * | 1.2, 3.1 | | | | 3: Making Data
Visualizations | H-DA-08 | Create interactive data visualizations using software tools to help others better understand real-world phenomena. | H-DA-06 | Use data analysis tools and techniques to identify patterns and analyze data represented in complex systems. | 1.2, 3.1 | | | | 4: Discover a
Data Story | H-DA-07 | Create computational models that represent the relationships among different elements of data. | | | 1.1, 1.2, 1.3, 3.1 | | | | 5: Cleaning Data | H-DA-06 | Use data analysis tools and techniques to identify patterns and analyze data represented in complex systems. | | | 1.1, 3.1, 3.2, 7.1 | | | | 6: Creating
Summary Tables | H-DA-05 | Use data analysis tools (e.g. formulas and other software data / statistical tools) to process and transform the data to make it more useful and reliable. | H-IC-05 | Evaluate and design computational artifacts to maximize their benefit to society. * | 1.1, 1.2, 3.1, 3.2 | | | | 7: Tell a Data
Story | H-DA-06 | Use data analysis tools and techniques to identify patterns and analyze data represented in complex systems. | H-IC-05 | Evaluate and design computational artifacts to maximize their benefit to society. * | 1.2, 3.1, 7.3 | | |